If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+19x+7=0
a = 6; b = 19; c = +7;
Δ = b2-4ac
Δ = 192-4·6·7
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{193}}{2*6}=\frac{-19-\sqrt{193}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{193}}{2*6}=\frac{-19+\sqrt{193}}{12} $
| 4x+15=24-2x | | 5x^2-7x-60=0 | | 19y-8y-7y=27+12-7 | | 6x-12=24-2x | | 8x/2=3x+2/3 | | 10x-8=24+2x | | X•x+x=20 | | X+2x-10=47 | | 2×(x+6)=4x+9 | | 2k+3k=13+7 | | 2y-1=14-y | | 4(v+4)-6v=18 | | 7x+7=37-3x | | 1=100-5x | | 2-5(2-4m)=33+5m | | x-x(.43)=399.99 | | 7(x-4)=2(x+5) | | 6x+9=2(x+4) | | 3y+17=5y-13 | | 2(x+3)/5=0.8 | | 0.4=15/x | | 6x+22=43 | | 7^{5x+3}=512 | | H(t)=30t-4.9^2t | | F(t)=-4t²+16t+9 | | -7t-35=14 | | 58-4cc=9 | | 26-18=2x-14 | | X=0.997x | | -1(14x+1)=3 | | (1.5+1)=6x+2 | | 3x+2(x+2)=9x+12 |